
Model Transformation Semantic Analysis by
Transformation

K. Lano1, S. Kolahdouz-Rahimi2, S. Yassipour-Tehrani1

1Dept of Informatics, King’s College London, Strand, London, UK; 2Dept of Software
Engineering, University of Isfahan, Isfahan, Iran

Abstract. In this paper we show how translation from QVT-R to an
intermediate semantic representation can be used to support analysis of
QVT-R specifications. We use the UML to RDB case study to illustrate
the approach.

1 Introduction

Verification of model transformations has been hindered by the large number of
different MT languages which are currently in use, such as ATL [6], QVT-R [15],
QVT-O, ETL [8], Flock [16] and UML-RSDS [10]. This results in a multiplication
and duplication of verification effort and the need to construct separate analysis
tools for each different language. In [13] we proposed a general transformation
framework using a language-independent transformation metamodel T MM to
express transformation semantics. In [11] we applied these techniques to analysis
of standard mode ATL. Subsequently the approach has been applied to ATL re-
fining mode, and to the Epsilon languages ETL [8] and Flock [16]. In this paper
we apply the approach to QVT-R. QVT-R presents particular difficulties for se-
mantic analysis because of its multiple execution modes, including aspects such
as implicit deletion, change propagation and in-place execution [14]. Various pro-
posals have been made for QVT-R semantics [3, 5, 17], however deficiencies and
ambiguities remain in the language semantics. Via the translation to T MM we
provide a logical semantics for QVT-R with a direct computational model that
supports proof of transformation properties including confluence and syntactic
correctness.

Figure 1 (extended from [11]) shows the metamodel T MM of our semantic
representation for transformations. Property , Operation, Constraint and Activity
are from the metamodel of the UML-RSDS subset of UML. A TransformationSpecification
is similar to a UML Use Case: it is an owner of structural and behavioural fea-
tures, and it has an associated behavior, with parameters, preconditions and
postconditions. In our experience this is an appropriate entity type for the rep-
resentation of transformations in declarative and hybrid MT languages.

Mappings from ATL, ETL, Flock and QVT-R to T MM have been imple-
mented as transformations from the MT language metamodels to T MM using
the UML-RSDS toolset [10]. Syntactic and data-dependency analysis can be
performed on the T MM representation to check definedness and confluence.

Fig. 1. Transformation specification metamodel T MM

Mappings to B, Z3 and SMV from T MM have also been automated in the
UML-RSDS tools. This approach means that only one semantic mapping needs
to be defined and verified for each formal analysis language, rather than semantic
maps for each different MT and target formalism.

Rule inheritance and transformation import/superposition relationships are
not present in T MM, instead such MT composition mechanisms are semanti-
cally expressed via the translations to T MM. The reason for this is that the
semantics of these mechanisms varies between MT languages [9].

In addition to enabling verification, the mappings can help to clarify semantic
issues in the MT languages (such as the ambiguities of in-place semantics in
QVT-R), and identify possibilities to extend the MT languages in semantically
consistent ways, eg., to extend ATL with direct update-in-place capabilities, to
extend ETL with multiple source parameter rules, or to extend MT languages
with explicit specifications of transformation invariant predicates.

2 Analysis of QVT-R

QVT is an OMG standard language for model transformation [15], consisting
of relational (QVT-R), operational (QVT-O) and core (QVT-Core) languages.
In this section we describe the semantic mapping from QVT-R to T MM. This

mapping provides a set-theoretic formal semantics of QVT-R, and an execu-
tion semantics based on [15], and it also takes account of the semantic issues
identified in [4, 17]. All of QVT-R is covered except for collection templates and
rule overriding (the semantics of overriding is not defined by the QVT-R stan-
dard: http://www.omg.org/issues/issue15524.txt). QVT-R supports bidirection-
ality and change-propagation for transformations. These aspects need therefore
to be modelled in the T MM representation. We do this by deriving cleanup
τ×, and change propagation τ∆ versions of a given transformation specification
τ : TransformationSpecification.

An example transformation, from UML to relational databases, is given in
[15]:

transformation tau(uml1 : SimpleUML, rdb1 : SimpleRDMS) {

top relation Class2Table

{ checkonly domain uml1 c : Class {name = n};

enforce domain rdb1 t : Table {name = n};

where { Attribute2Column(c,t) }

}

relation Attribute2Column

{ checkonly domain uml1 c : Class { attribute =

a : Attribute {name = an, type = typ:Type { name = tn }}};

enforce domain rdb1 t : Table { column =

col : Column {name = an, coltype = tn} };

}

}

The name attributes of Class and Table are identities/keys, and attribute and
column are set-valued roles.

2.1 Semantic mapping from QVT-R to T MM

Table 1 expresses the correspondence between QVT-R and T MM language ele-
ments. We assume that there are no cycles in the dependencies between relations
via when/where clauses.

A computation step of a QVT-R transformation consists of the application
of a top relation to specific model elements matching its source domains. The
application of non-top relations invoked directly or indirectly from this top re-
lation application are included in the computation step. For simplicity, in the
following we assume that a QVT-R transformation is executed in the direction of
the enforce domains as targets, with the checkonly domains as sources. Other ex-
ecution variations, including checkonly mode, can be modelled in a similar way.
We will use the QVT-R metamodel classes such as TemplateExp and Relation
from [15] to describe the mapping. A full formal definition of the mapping can
be found in [10], and it is implemented in the UML-RSDS toolset.

An ObjectTemplateExp ote of the form

e : E { f1 = val1, ..., fn = valn }

QVT-R element T MM representation

RelationalTransformation TransformationSpecification

modelParameter : Sequence(TypedModel) parameters : Sequence(ModelEnd)

Relation (isTopLevel = true) Mapping

Relation (isTopLevel = false) Owned operation of TransformationSpecification

Relation variable Variable defined in Mapping condition

RelationDomain (isEnforceable = false) Mapping condition and readOnly MappingEnd

RelationDomain (isEnforceable = true) Mapping relation and updated MappingEnd

Check-before-enforce semantics Unique instantiation semantics [12]

Key Identity attribute
Table 1. Correspondence of QVT-R and T MM

occurring in a checkonly domain is interpreted as a Mapping condition predicate
cpred(ote) formed as a conjunction of the interpretations of each PropertyTemplateItem
fi = vali . For enforce domains, the interpretation of ote as a Mapping relation
predicate is epred(ote) [10]. The E→exists(e | P) quantifier in Mapping rela-
tions is interpreted as “create a new e : E and establish P for e, unless there
already exists an e : E satisfying P”. The Unique Instantiation pattern of [12]
is used to implement QVT-R ‘check before enforce’ semantics [15]. If E has a
key attribute, and an E instance already exists with the key value specified in
P , then that instance is updated to satisfy the remainder of P .

The interpretation of a QVT top-level Relation r with multiple (at least
one) checkonly domains, and multiple (at least one) enforce domains is then a
Mapping Conr which has readOnly ends for each checkonly domain of r , and
updated ends for each enforce domain of r . Conr has condition the conjunction
of predicates e : E & cpred for each checkonly domain

checkonly domain src e : E { f1 = val1, ..., fn = valn }

and relation the conjunction of predicates epred for each enforce domain

enforce domain trg e : E { f1 = val1, ..., fn = valn }

In addition, the when clause is interpreted as a predicate whenp and conjoined
to the Mapping condition, and the where clause is interpreted as a predicate
wherep and conjoined to the relation. An implicit where predicate, always incor-
porated into the relation of Conr for separate-models model transformations, is
the creation of a trace object for this rule application:

r$trace→exists(rx | rx .e1 = e1 & ... & rx .en = en)

where the ei are all the root variables of the relation domains of r . r$trace
is an auxiliary entity which has attributes consisting of these variables1. A
RelationCallExp of r(e1, ..., en) in a when clause is also interpreted by the same

1 “Relations ... implicitly creates trace instances to record what occurred during a
transformation execution” (Page 9 of [15])

predicate, as a condition query expression. The main use of these trace relations
is to control execution order by means of when conditions [7], [4].

The complete interpretation of Class2Table as a Mapping ConClass2Table is:

c : Class & n = c.name ⇒
Table→exists(t | t .name = n & attribute2column$op(c, t) &

Class2Table$trace→exists(class2table |
class2table.c = c & class2table.t = t))

where the condition is written on the LHS of ⇒, and the relation on the RHS.
A QVT-R relational transformation τ is interpreted as a Transformation-

Specification which has rules Conr for each top-level Relation r of τ . We treat
the order of these rules as significant. For non-top-level relations r , a predi-
cate Opr is used to form the postcondition of an update operation opr which
has parameters the root variables of the relation domains of r . Opr is formed
as for Conr , but without antecedent conjuncts e : E for the root variables of
the checkonly relation domains, and without quantifiers E→exists(e | ...) for
the root variables of the enforce relation domains of r . It is assumed that all
the operation parameters are bound at the point of call. These operations are
added as owned operations of the TransformationSpecification representing the
transformation.

QVT-R has the semantic feature of implicit deletion: if a relation is not
satisfiable for an existing element of the target model, which matches the tar-
get domain pattern of the relation, then this target element should be deleted.
We express this semantics by deriving transformation invariants from the rules,
which are constraints which are expected to hold at the start and throughout the
transformation execution. The invariants express that all target model elements
can be derived from source model elements via at least one top-level relation and
some possible execution2. If an invariant fails for a given target enforce domain
element, then the target element should be deleted (Page 21 of [15]). The invari-
ants are derived as duals of the forward top-level rules: an invariant constraint
Invr is derived from a top relation r by exchanging the roles of checkonly and
enforce domains in the derivation process for Conr . Both where and when clause
predicates are placed in the succedent of Invr , and trace constructions/tests are
omitted3. For the above example Class2Table this produces the Mapping

t : Table & n = t .name ⇒
Class→exists(c | c.name = n & attribute2column$inv(c, t))

If the condition P : n = t .name of this mapping holds for a t : Table in the target
model, but the relation (succedent) Q does not hold, then t should be deleted.
This semantics is expressed by a Mapping with condition P & not(Q) and
relation t→isDeleted(). Each of the enforced domain root variables involved in

2 These consistency properties are logical conditions, independent of traces/execution
orders.

3 For the when clause a test on a top relation r1 is interpreted as Invr1

the QVT-R relation is deleted, and the tuple of domain variables is also removed
from the relation trace. This deletion form of Invr is denoted CleanTargetr .
For non-top relations r , a boolean-valued query operation r$inv is produced
whose postcondition is based on the dual of Opr . The default value of such a
query operation is false. The invocation of r in either a where or when clause
is interpreted as a call of r$inv . For QVT-T transformations t with separate
source and target models, a cleanup version τ× of its T MM representation τ is
formed with its rules consisting of the CleanTargetr for the top relations r of t .
The complete semantics of t is then the sequential composition τ×; τ . Similarly, a
change-propagation version τ∆ of τ can be defined which uses the trace relations
to propagate incremental source model changes to the target model, including
deletion of target elements derived from deleted source elements [10].

2.2 Analysis techniques

After translation to T MM, analyses of determinacy, confluence and termina-
tion of a QVT-R transformation based on syntax and data-dependency can be
carried out, using the UML-RSDS tools. For the above specification, Class2Table
is identified as confluent and of type 1, meaning that it can be correctly imple-
mented by a bounded loop, instead of by a fixed-point iteration [13]. If the called
relation was changed to:

relation Attribute2Column

{ checkonly domain uml1 c : Class { name = n, attribute =

a : Attribute { name = an, type = typ : Type { name = tn }};

enforce domain rdb1 t : Table { name = n, column = col : Column

{ name = an + t.column->size(), coltype = tn }};

}

then the translated constraint would be identified as being of type 2 (it both
reads and writes Table :: column), and a warning would be issued to the devel-
oper that it may be semantically incorrect: mapping transformations should nor-
mally consist of type 1 constraints only. Required postconditions can be proved
as transformation invariants, using B [13] or can be derived from the trans-
formation invariants. For example, the syntactic correctness property that the
names of columns of tables are unique within the table can be established from
InvClass2Table and the corresponding property for attributes of classes. Model-
level semantic preservation can also be proved by invariant-based reasoning.
The semantics can also be used to justify refactorings of QVT-R transforma-
tion specifications by showing that the semantics of the original and refactored
transformations are the same. If all the rules are type 1 and satisfy the condition
that rule applications never over-write data read by rule applications preceding
them in execution order, then semantic correctness of the transformation can be
deduced.

We have evaluated our semantics on a number of examples, in particular
the checkonly examples of [17]. Our semantics for a checkonly top relation r
in the direction of domain d is Invr evaluated with d as the enforce domain

(existentially quantified). This agrees with the semantics of [17]. To ensure the
correctness of the semantics for update transformations, the translation clauses
have been defined based very closely on the (informal) semantics presented in
[15]. Update examples such as the UML to RDB example have been used to check
that our semantics agrees with that given in [15]. One major difference between
our semantics and the Medini QVT-R semantics is that the OCL semantics used
in T MM uses classical logic. Thus specifications which use explicit null and
invalid values cannot be given a semantics.

2.3 In-place transformations

The semantics of in-place transformations is described very briefly in [15] and
it is unclear how this semantics interacts with aspects such as implicit deletion
and change propagation. The translation to T MM described above can be used
to give a semantics for in-place QVT-R specifications, but with a fixed-point
execution model: the computationStep of a Mapping is applied repeatedly until
the Mapping relation is satisfied for all model elements that satisfy its condition.
Relation traces may not be functional. Implicit deletion cannot be expressed
by invariants, instead ‘default deletion’ rules are defined, which express that
if no rule creates or copies an element, then the element is deleted. Change-
propagation may be implemented by re-execution of the transformation on the
modified model. An example of translation and analysis of an in-place QVT-R
transformation is given in [10].

3 Related work

Some other works consider the analysis of multiple transformation languages
by transformation [2, 3]. We explicitly represent the semantics of MT languages
within our language-independent representation, such semantic representation is
not detailed in other approaches such as [2]. Compared to [3, 14, 17] we include
an execution semantics for QVT-R, with explicit representation of transforma-
tion steps, trace relations and of implicit deletion semantics. This is necessary
for proof of syntactic correctness and model-level semantic preservation using
transformation invariants. This representation is also necessary to express the se-
mantics of in-place transformations. In our approach, confluence and termination
may be proved for QVT-R specifications based on syntactic and data-dependency
analysis of the semantic representation, rather than by using state-space explo-
ration as in [5]. Stevens [17] identifies the deficiencies of existing QVT-R seman-
tics and tools, and provides a game-theoretic semantics for checkonly transfor-
mations. Stevens prefers the declarative interpretation of where/when clauses
for both checkonly and enforce mode. However the operational interpretation
is used in practice for enforce mode, eg., in [15], [7], [4]. We adopt the declar-
ative interpretation for checkonly mode. In terms of the classifications of [1],
we address the verification properties of termination, determinism, conformance
and semantic preservation, using transformation-dependent input-independent
verification techniques.

4 Conclusions

We have described techniques which provide language-independent verification
capabilities for model transformations via translations to a common semantic
representation. Translations to T MM have also been implemented for ATL,
Flock and ETL [10], these semantic interpretations highlight the semantic com-
monalities and differences between MT languages, and identify where problem-
atic areas exist in their semantics. Our approach can also be extended in principle
to other MT languages, such as TGG, GrGen.NET and QVT-O.

References

1. M. Amrani, B. Combemale, L. Lucio, G. Selim, J. Dingel, Y. Le Traon, H.
Vangheluwe, J. Cordy, Formal verification techniques for model transformations: a
tridimensional classification, JOT, 2011.

2. V. Bollati, J. Vara, A. Jimenez, E. Marcos, Applying MDE to the (semi-)automatic
development of model transformations, Information and Software Technology, 2013.

3. J. Cabot, R. Clariso, E. Guerra, J. De Lara, Verification and Validation of Declara-
tive Model-to-Model Transformations Through Invariants, Journal of Systems and
Software, 2010.

4. T. Goldschmidt, G. Wachsmuth, Refinement transformation support for QVT re-
lational transformations, FZI, Karlsruhe, Germany, 2011.

5. E. Guerra, J. de Lara, Colouring: execution, debug and analysis of QVT-Relations
transformations through coloured Petri Nets, SoSyM vol. 13, no. 4, Oct 2014.

6. Eclipsepedia, ATL User Guide, http://wiki.eclipse.org/ATL/ User Guide -
The ATL Language, 2014.

7. J. Kiegeland, H. Eichler, Medini-QVT, http://projects.ikv.de/qvt, 2014.
8. D. Kolovos, R. Paige, F. Polack, The Epsilon Transformation Language, in ICMT

2008, LNCS Vol. 5063, pp. 46–60, Springer-Verlag, 2008.
9. A. Kusel, J. Schonbock, M. Wimmer, G. Kappel, W. Retchitzegger, W. Schwinger,

Reuse in model-to-model transformation languages: are we there yet?, Sosym vol.
14, no. 2, 2015.

10. K. Lano, The UML-RSDS Manual, www.dcs.kcl.ac.uk/staff/kcl/uml2web/umlrsds.pdf,
2014.

11. K. Lano, S. Kolahdouz-Rahimi, T. Clark, Language-independent Model Transfor-
mation Verification, VOLT 2014, York, July 2014.

12. K. Lano, S. Kolahdouz-Rahimi, Model Transformation Design Patterns, IEEE
Transactions in Software Engineering, 2014.

13. K. Lano, S. Kolahdouz-Rahimi, T. Clark, A framework for model transformation
verification, BCS FACS journal, 2014.

14. N. Macedo, A. Cunha, Implementing QVT-R bidirectional model transformations
using Alloy, FASE 2013.

15. OMG, MOF 2.0 Query/View/Transformation Specification v1.1, 2011.
16. L. Rose, D. Kolovos, R. Paige, F. Polack, Model migration with Epsilon Flock,

International Conference on Model Transformations 2010, Springer-Verlag.
17. P. Stevens, A simple game-theoretic approach to checkonly QVT-Relations, Softw.

Syst. Model vol. 12, no. 1, 2013, pp. 175–199.

